
 Git - 0 to Pro Reference
 By: supersimple.dev
 Tutorial link: https://www.youtube.com/watch?v=hrTQipWp6co

 Command Line (Terminal / PowerShell)
 ls

 cd ~/Desktop/folder
 List the files and folders in the current folder
 Change the folder that the command line is
 running in

 Note: git commands must be run inside the folder that contains all the code.

 Creating Commits
 In Git, version = commit
 Version history = commit history

 git init Git will start tracking all changes in the current folder
 git status Show all changes since the previous commit

 git add <file|folder> Pick changes to go into next commit
 git add file

 git add folder/
 Pick individual file
 Pick all files inside a folder (and subfolders)

 git add . Pick all files (in folder command line is running in)

 git commit -m "message" Creates a commit with a message attached
 git commit -m "message" --amend Update previous commit instead of creating new one

 git log View the commit history
 git log --all Show all commits (not just current branch)
 git log --all --graph Show branching visually in the command line

 Configure Name & Email for Commits
 git config --global user.name "Your Name"

 git config --global user.email "email@example.com"

 Working Area = contains changes start in the working area

https://supersimple.dev/lessons/git-tutorial-for-absolute-beginners
https://www.youtube.com/watch?v=hrTQipWp6co

 Staging Area = contains changes that will go into the next commit

 git add . working => staging
 git commit -m "message" staging => commit history

 git reset <file|folder>

 git reset file

 git reset folder/

 git reset .

 staging => working

 git checkout -- <file|folder>

 git checkout -- file

 git checkout -- folder/

 git checkout -- .

 working => remove the changes

 Viewing Previous Commits

 git checkout <commit_hash|branch_name> View a previous commit

 master = branch name
 1. You can git checkout branch
 2. Always points to latest commit
 on the branch.

 HEAD = indicates which commit
 you are currently viewing

 Restoring to a Previous Commit
 git checkout <hash|branch> <file|folder> Restore the contents of files back to a

 previous commit
 git checkout <hash|branch> file Restore a file
 git checkout <hash|branch> folder/ Restore all files in folder (& subfolders)
 git checkout <hash|branch> . Restore all files in project

 Other Features of Git
 git config --global alias.shortcut <command> Creates an alias (a shortcut)

 git config --global alias.s "status" git s = git status

 .gitignore Tell git which files/folders it SHOULD NOT track
 rm -rf .git Remove git from project

 GitHub
 Repository = a folder containing code where any changes to the code are tracked by git.
 (To create a repository, we create a new folder on our computer, and then run git init)

 GitHub = a service that lets us save our git repositories online. It also helps us:
 - backup our code in case we delete it on our computer
 - see the history of our code changes more easily
 - alternatives include Bitbucket and GitLab

 Local repository = a git repository saved on our computer
 Remote repository = a git repository saved online (for example on GitHub)

 Uploading Code to GitHub
 git remote add <remote_name> <url> Link a local repository to a remote repository and

 give a name for this link

 git remote add origin https://github.com/SuperSimpleDev/repository1

 ̂

 The above command links a local repository to a GitHub repository (located at the url
 https://github.com/SuperSimpleDev/repository1) and gives it a name "origin"

 git remote List all remote repositories that are linked
 git remote -v List all remote repositories (but with more detail)

 git remote remove <remote_name> Removes a link to a remote repository
 git remote remove origin Removes the link to the remote repository named

 "origin"

 git config --global credential.username <username>
 Configure your GitHub username so you can get
 access to your Github repository

 git push <remote_name> <branch> Upload a branch of your git version history to your
 remote repository

 git branch Shows a list of available branches
 git log --all --graph Shows the branches visually in the history

 git push origin main Upload the branch "main" to the remote repository
 named "origin"

 git push <remote_name> <branch> --set-upstream Sets up a shortcut for this
 branch and remote repository

 git push origin main --set-upstream Next time you are on the main
 branch and you run git push , it
 will automatically push the
 main branch to origin

 git push <remote_name> <branch> -f Force-push the branch to the remote repository (it
 will overwrite what's on the remote repository)

 Downloading Code from GitHub
 git clone <url> Download a remote repository from a url

 git clone https://github.com/SuperSimpleDev/repository1

 git clone <url> <folder_name> Download the repository and give it a different
 folder name

 git fetch Updates all remote tracking branches. Remote
 tracking branches (like origin/main) show what
 the branch looks like in the remote repository

 git pull <remote_name> <branch> Update the local branch with any updates from
 the remote repository (on GitHub)

 git pull origin main Downloads any new commits from the main
 branch on origin , and updates the local main
 branch with those new commits

 git pull origin main --set-upstream
 ̂
 Sets up a shortcut so that the next time you are on the main branch and run git pull , it will
 automatically git pull origin main

 Branching
 Branching = create a copy of the version history that we can work on without affecting the
 original version history. This lets us work on multiple things (features + fixes) at the same time.

 git branch <branch_name> Creates a new branch
 git branch feature1 Create a new branch named feature1

 git checkout <branch_name> Switch to a different branch and start working on
 that branch

 git checkout feature1 Switch to the feature1 branch. New commits will
 now be added to the feature1 branch

 HEAD = points to which branch we are currently working on
 HEAD -> feature1 = we are currently working on the feature1 branch. Any new commits will
 be added to the feature1 branch

 git branch -D <branch_name>
 git branch -D feature1

 Deletes a branch
 Deletes the feature1 branch

 Merging
 git merge <branch_name> -m "message" Merge the current branch (indicated by HEAD ->)

 with another branch (<branch_name>). Saves
 the result of the merge as a commit on the
 current branch

 git checkout main
 git merge feature1 -m "message"

 1. First switch to the main branch
 2. Then merge the main branch with the
 feature1 branch. The result of the merge will be
 added to main as a commit (a "merge commit")

 Merge Conflicts
 <<<<<<< HEAD
 code1
 =======
 code2
 >>>>>>> branch

 If there is a merge conflict (git doesn't know
 what the final code should be), it will add this in
 your code.

 (This is just for your convenience, the <<<<<<<
 and >>>>>>> don't have special meaning)

 <<<<<<< HEAD
 ... <-- Code in the current branch (indicated by HEAD ->)
 =======
 ... <-- Code in the branch that is being merged into HEAD
 >>>>>>> branch

 To resolve a merge conflict:

 1. Delete all the extra code and just leave the final code that you want.
 <<<<<<< HEAD
 code1
 ======= => code2
 code2
 >>>>>>> branch

 2. If there are conflicts in multiple places in your code, repeat step 1 for all those places.

 3. Create a commit.

 git add .

 git commit -m "message"

 Feature Branch Workflow
 A popular process that companies use when adding new features to their software.

 1. Create a branch for the new feature (called a "feature branch").
 git branch new-feature
 git checkout new-feature
 Make some changes to the code...
 git add .
 git commit -m "new feature message"

 2. Upload the feature branch to GitHub.
 git push origin new-feature

 3. Create a pull request on GitHub (a pull request lets teammates do code reviews and add
 comments).

 4. Merge the feature branch into the main branch (by opening the pull request in the browser
 and clicking "Merge pull request")

 5. After merging, update the local repository (so that it stays in sync with the remote repository
 on GitHub).
 git checkout main
 git pull origin main

 Merge Conflicts in the Feature Branch Workflow
 A merge conflict can happen if 2 or more pull requests change the same file and the same line.

 We can either:
 1. Resolve the merge conflict on GitHub.

 2. Resolve the merge conflict on our computer.
 1) Get the latest updates from main
 git checkout main
 git pull origin main

 2) Get the latest updates from the feature branch.
 git checkout feature4
 git pull origin feature4

 3) Merge main into the feature branch (feature4). Notice the direction of the merge: we want
 the merge commit to stay on the feature branch so our teammates can review it.

 git checkout feature4
 git merge master

 4) Push the resolved feature branch to GitHub.
 git push origin feature4

 Now the pull request should be ready to merge again.

